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ABSTRACT

A new class of fundamental -waves arises in conservation laws that are not strictly

hyperbolic. These waves serve as transitions between wave groups associated with

particular characteristic families. Transitional shock waves are discontinuous so-

lutions that possess viscous profiles but do not conform to the Lax characteristic

criterion; they are sensitive to the precise form of the physical viscosity. Transi-

tional rarefaction waves are rarefaction fans across which the characteristic family

changes from faster to slower. /' . rl

this paper we4den4i <an extensive family of transitional shock waves

for conservation laws with quadratic fluxes and arbitrary viscosity matrices; this

family comprises all transitional shock waves for a certain class of such quadratic

models. We also establish, for general systems of two conservation laws, the

generic nature of rarefaction curves near an elliptic region, thereby identifying

transitional rarefaction waves. The use of transitional waves in solving Riemann

problems is illustrated in an example where the characteristic and viscous profile

admissibility criteria yield distinct solutions. (k __._
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TRANSITIONAL WAVES FOR CONSERVATION LAWS

Eli L. Isaacson, Dan Marchesin, and Bradley J. Plohr

1. Introduction

Non-strictly-hyperbolic systems of conservation laws possess fundamental wave solu-

tions that are distinct from classical rarefaction and shock waves. These new waves are not

associated with a particular characteristic family; rather they serve as transitions between

classical wave groups. In the presence of such transitional waves, the solution of a Riemann

problem for a system of n conservation laws can contain more than n wave groups. The

purpose of the present paper is to study the character of transitional waves and the crucial

role they play in solving Riemann problems.

For a particular model system of two conservation laws, Shearer, Schaeffer, Marchesin,

and Paes-Leme [35] found it impossible to solve the general Riemann problem using only

classical Lax shock waves. However, the general solution exists and is unique provided that

a limited family of nonclassical discontinuities is allowed. For these crossing discontinuities,

neither family of characteristics is compressive, in contrast to shock waves. The same

type of discontinuity occurs in reactive gas dynamics as weak deflagration waves [5]. To

solve another model system, Isaacson and Temple [21] utilized rarefaction waves that

switch from characteristic family 2 to family 1 at the locus where eigenvalues coincide.

Composite waves built from such discontinuities and rarefaction waves also arise [17, 141.

Thus the solution of a Riemann problem can involve waves that are not associated with

a unique characteristic family. We view these examples as instances of a new class of

waves, transitional waves. Thus a transitional shock wave is a crossing discontinuity that

conforms to an admissibility criterion, and a transitional rarefaction wave changes from a

faster family to a slower family. The nature of transitional shock and rarefaction waves is

the subject of this paper.

As discussed in §2, we allow for any discontinuity that is the limit of traveling wave

solutions of the conservation laws as augmented by a parabolic term; this is motivated by

physical considerations. Admissible discontinuities correspond, then, to orbits connecting

singularities of a dynamical system associated with the parabolic system. Whereas a

classical shock wave generalizes to an orbit between a node and a saddle point, which

is structurally stable under general perturbations, an admissible crossing discontinuity

corresponds to a saddle-saddle connection, which has stringent stability restrictions. In
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particular, the class of transitional shock waves depends critically on the viscous term

in the parabolic equation. Furthermore, saddle-saddle connections signal bifurcations of

admissible discontinuities. Also possible are waves corresponding to connecting orbits

between nodes; however, these totally compressive waves can be decomposed into classical

shock waves.

In §3 we study transitional shock waves for conservation laws with quadratic fluxes,

which are simple models in which the new shock waves occur. The analysis is based on an

explicit calculation that establishes a direct relationship between transitional shock waves

and the viscous term: for a class of such quadratic models, a saddle-saddle connection

must lie along a straight line parallel to a direction associated with the viscosity matrix.

Wc. provide a complete characterization of transitional shock waves of this form in §§3a-3c;

circumstances under which these are the only transitional shock waves are established in

§3c and App. A. As a consequence, the regions in state space where these waves play a role

are easily identified. The case when the viscosity matrix is the identity, which is commonly

assumed in analyses of traveling waves, is shown to have degenerate features.

In §4 we determine the behavior of rarefaction curves near a boundary between elliptic

and hyperbolic behavior in a general system of two conservation laws. The transitional

rarefaction waves are shown to arise from integral curves through isolated points on this

boundary. The method of analysis represents both the 1- and 2-family rarefaction curves

as a foliation defined by a single line field on a certain manifold. For strictly hyperbolic

conservation laws, this manifold consists of two separate sheets, one for each family; in

mixed-type problems, the two sheets are joined at the elliptic-hyperbolic boundary. Ex-

amples of these manifolds are given in App. B.

We illustrate the use of transitional waves to solve Riemann problems in §5. The

essential construct is the transitional curve. The examples we study belong to a class of

quadratic models for which the Riemann problem has a unique solution using only classical

shock waves [20, 321. We show, however, that some of the classical shock waves used in

these solutions do not admit viscous profiles, and that transitional shock waves can be

used in their place.

Finally, in §6, we summarize our results.
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2. Transitional Waves

In this section we study the stmcture of solutions of Riemann problems. If the states

in the initial data are close, the solution constructed classically consists of several groups

of waves, each group corresponding to a characteristic family. Globally, however, the

solution might contain transitional waves that interpolate between families, as we describe

in §2a. To determine an appropriate class of transitional waves, we invoke the admissibility

criterion based on viscous profies; this criterion is discussed in §2b.

2a. Wave Groups

We are interested in solutions of a system of conservation laws

Ut + F(U)z = 0 (2.1)

governing the evolution, in one space dimension, of an n-dimensional state vector U. The

function F is called the flux. The characteristic speeds for Eq. (2.1), i.e., the eigenvalues of

the Jacobian derivative matrix F'(U), are denoted A(U), i = 1,..., n. In the hyperbolic

region, where the characteristic speeds are real, we order them as

A) (U) U) _\.2. ( A(U). (2.2)

The dependence of the characteristic speeds on U leads, in general, to focusing of waves

and the formation of discontinuous solutions, so that Eq. (2.1) must be interpreted in the

sense of distributions.

Much of the structure of general solutions of Eq. (2.1) is reflected in solutions that

respect the invariance of the equation under the scaling transformation (t, x) " (at, az).

Such scale-invariant solutions satisfy the initial conditions of a Riemann problem: at t = 0,

the solution U must be a constant UL for x < 0 and another constant UR for X > 0.

Conversely, solutions of a Riemann problem are expected to be scale-invariant, i.e., they

depend on t and x only through the combination x = z/t. Although Riemann problems

are only special initial value problems, the solutions of the general Cauchy initial value

problem may be viewed as a nonlinear superposition of scale-invariant solutions [8].

A scale-invariant solution can be partitioned into several groups of waves; the waves

in each group move together as a single entity. More precisely, we define a wave group
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to be a scale-invariant solution that contains no intermediate constant states. Thus a

solution of a Riemann problem comprises a sequence of wave groups moving apart from

each other, as in Fig. I(a). Wave groups are composed of two basic ingredients: centered

rarefaction waves and centered discontinuous waves. [See Fig. 1(b).] A centered rarefaction

wave associated with a characteristic family i is constructed using integral curves of the

differential equation

6 = ri(U) , (2.3)

where ri(U) is a right eigenvector corresponding to Ai(U). A rarefaction wave corresponds

to a segment of an integral curve along which Ai(U) is nondecreasing; it is defined by

inverting the relation Ai(U) = . A centered discontinuous wave is a jump discontinuity

that propagates at speed s and separates two constant states U_ and U+, where U-, U+,

and s satisfy the system of n equations

-s[U+ - U-1 + F(U+) - F(U_) = 0 , (2.4)

called the Rankine-Hugoniot jump condition. (By convention, U_ is on the left side of the

discontinuity and U+ is on the right side.)

t wave rarefaction
group / wave

(a) (b)

Fig. 1: Scale-invariant solutions: (a) a solution of a Riemann prob-
lem, comprising a sequence of wave groups- (b) a centered rarefac-
tion wave and a centered discontinuous wave.

To avoid nonuniqueness of solutions of Riemann problems, the class of allowable dis-

continuous waves must be restricted. For conservation laws that are genuinely nonlinear,
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Lax [25] introduced the admissibility requirement that the characteristics of one family

impinge on both sides of the discontinuity, while the characteristics of the other families

cross through the discontinuity. For more general conservation laws, characteristics must

be permitted to become tangent to the discontinuity. Therefore we define a centered dis-

continuous wave to be a Lax discontinuity of the ith family provided that the characteristic

speeds are related to the propagation speed as follows:

A <(U+) S < Ai(U.), (2.5)

_<..1(U.) a 5 (2.6)

Remark: A Lax discontinuity is associated with a unique family except in one case:

an ith-family discontinuity for which Ai(U-) = a = Ai+=(U+) may be regarded also as

associated with family i + 1. This ambiguity in nomenclature, however, does not affect our

results.

If we adopt the admissibility criterion based on characteristics and assume that all

characteristic speeds are distinct, then any wave, i.e., rarefaction wave or discontinuity,

has an associated family. Observe that: (1) no wave can be preceded by a wave of a faster

family; and (2) two waves of the same family must belong to the same wave group. There-

fore a solution of a Riemann problem can contain at most n wave groups. In particular,

no wave can appear strictly between a wave group containing an i-wave and another group

containing an (i + 1)-wave. These facts [26] generalize the classical picture [25] in which a

solution of a Riemann problem consists of at most n shock or rarefaction waves, separated

by constant states, where each wave is associated with a distinct family.

The characteristics criterion, however, is sometimes overly restrictive and other times

too lax: a Riemann problem might have no solution or it might have many. An alterna-

tive admissibility criterion is to require discontinuous waves to possess viscous profiles, as

described more fully in §2b. This is the viscosity admissibility criterion. In general, it is

distinct from the characteristic criterion, since there exist Lax discontinuities that do not

have viscous profiles, while some discontinuities with viscous profiles are not of Lax type.

The viscosity criterion, too, can fail to guarantee existence and uniqueness of solutions of

.............. 'm '' -- m m mi m i, m ~ mma i i m i-6-ls
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Riemann problems, but we prefer it to the characteristic criterion because it derives from

certain physical effects that have been neglected in the modeling equations. In this paper

we adopt the viscosity admissibility criterion.

When discontinuities that are not of Lax type are allowed, or when characteristic

speeds may coincide, it is possible for the solution of a Riemann problem to contain more

than n wave groups. Consider, for example, a discontinuity satisfying

Ai(U_) < s < Ai+ , (U_) , (2.7)

Ai(U+) < s < Ai+,(U+) , (2.8)

through which all characteristics cross. Such a crossing discontinuity can have a viscous

profile, as we show in §3c. This wave can appear strictly between a wave group containing

an i-wave and one containing an (i + 1)-wave; see Fig. 2(a). As another possibility, an

integral curve of family i + I might pass tangent to the locus where Ai+(U) = Ai(U) and

continue with an integral curve of family i (see §4). This gives a rarefaction wave that can

lie strictly between i-waves and (i + 1)-waves, as in Fig. 2(b).

In general, therefore, a distinct wave group can appear between one group containing

an i-wave and another containing an (i + 1)-wave. We call it an i,(i + 1)-transitional

wave group. A transitional shock wave is a crossing discontinuity that conforms to the

viscosity admissibility criterion, and a transitional rarefaction wave is a rarefaction wave

that changes from a faster family to a slower family. More complicated transitional wave

groups are also possible. For example, a discontinuity satisfying Ai(U-) < s = Ai+,(U-),

as well as inequality (2.8), can adjoin an (i + 1)-wave group on its left [17], as in Fig. 2(c).

Similarly, a transitional rarefaction can adjoin an i-wave group on its right [see Fig. 2(d)]

or an (i + 1)-wave group on its left [14].

2b. Viscosity Admissibility Criterion

Typically, Eq. (2.1) is an approximation to an equation of the form

Ut + F(U) = [D(U)Lt]. (2.9)

in the (singular) limit as E --, 0+. Here D is the viscosity matrix, which models certain

physical effects that are neglected in the conservation law. We require that the eigenvalues
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(a) (b)

t rasional t ransitional

(c) (d)

Fig. 2: Transitional waves: (a) a crossing discontinuity; (b) a
transitional rarefaction wave; (c), (d) transitional composite waves.
Light lines are characteristics.

of D(U) have positive real part; this guarantees that short wavelength perturbations of

constant solutions decay exponentially in time.

Physically realizable solutions of Eq. (2.1) are expected to be limits of solutions of
the parabolic equation (2.9). In particular, certain centered discontinuous waves arise as

limits of traveling wave solutions as follows. A traveling wave depends on t and x only

through the combination c = (x - st)/E, and it approaches limits Ucs. and U_ as - -00.

Therefore Eq. (2.9) can be integrated once to obtain the dynamical system

-s [U(t) - U-] + F(U( )) - F(U_) = D(U(C)) &( ) , (2.10)

where the dot denotes differentiation with respect to C. Taking the limit of Eq. (2.10) as

-- oo shows that U+, U_, and s must be related by the Rankine-Hugoniot condition (2.4),

--8-
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so that U+ and U_ are critical points for the dynamical system. As e -* 0+, the spatial

region over which the solution makes the transition from U. to U+ shrinks to a point at x =

st. Consequently, the traveling wave solution approaches a centered discontinuous wave.

Thus a discontinuity is said to have a viscous profile when the dynamical system (2.10)

has a connecting orbit flowing from U_ to U+. It is natural to regard a discontinuity as

admissible only if it has a viscous profile; this is the viscosity criterion for admissibility [5,

15, 7].

The critical points of a dynamical system are crucial to its study. For Eq. (2.10), a

critical point is a state Uc that satisfies the Rankine-Hugoniot condition for the given state

U_ and the speed s. The behavior of solutions in the neighborhood of a critical point U,

is reflected in qualitative features of solutions of the linearization of Eq. (2.10) about U:

[-s + F'(U,)](U - U.:) = D(U,) U . (2.11)

Such solutions are determined by the eigenvalues p and corresponding eigenvectors U,, that

satisfy

[-s + F'(Uc)} , p D(U,)&, . (2.12)

For example, U = Uc + 'Ec, exp(yt) &, when the eigenvalues are distinct. Thus the

character of the critical point is determined by the eigenvalues p.

Let us restrict now to systems of two conservation laws, so that Eq. (2.10) is a planar

dynamical system. A critical point is classified as an antisaddle point (i.e., a node, focus,

or center) or as a saddle point. An orbit for the dynamical system connects either two

saddle points, two antisaddle points, or a saddle and an antisaddle. To illustrate the

relationship between the nature of critical points and the classification of discontinuities,

we first discuss the case when D is the identity matrix; then the eigenvalues at a critical

point U are pi = Aj(Ue) - s, i = 1, 2. This choice arises commonly in studies of viscous

profiles for shock waves, but it is a degenerate case for crossing discontinuities, as we show

in §3b.

A Lax shock wave of the first family has s < AI(U-) < A2 (U-) and A1(U+) < s <

A2(U+), so that the critical points U. and U+ of Eq. (2.10) are, respectively, a repelling

node and a saddle point. Similarly, U_ and U+ are, respectively, a saddle point and

-9-
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an attracting node in the case of a Lax shock wave of the second family. Therefore an

admissible discontinuity of Lax type corresponds to a saddle-node connection. For crossing

discontinuities, which are defined by inequalities (2.7) and (2.8) with i = 1, the critical

points U. and U+ are saddle points. Thus transitional shock waves correspond to saddle-

saddle connections. Finally, a connecting orbit that joins a repelling node to an attracting

node corresponds to a totally compressive shock wave:

A(,U+) < s < A(U_)), (2.13)

A2(U+) < s < A2(U-) , (2.14)

so that the characteristics of both families impinge on the discontinuity.

In the general case when D is not a multiple of the identity matrix, the signs of

Ai(Uc) - a do not always determine the dharacter of a critical point Uc,. Indeed, a critical

point that is a node when D = I can become a focus when D is changed. However,

saddle points are preserved provided that the determinant of D is positive; this can be

demonstrated as follows. Because p+ and p- are the eigenvalues of D - 1 [-8 + F'(Uc)],

their product p+-._ has the same sign as that of (A+ - s)(A- - s), which is negative.

Therefore p+ and u- must be real and have opposite sign. (Nodes, too, are preserved

if the Jacobian matrix F'(Uc) is symmetric and D is symmetric and positive definite, as

shown in Lemma A.2, but this is a rather restrictive sit,.ation.)

When U- and U.+ are sufficiently close, the saddle-antisaddle nature of Lax shock

waves guarantees the existence and uniqueness of a connecting orbit [6, 4] (assuming

strict hyperbolicity and genuine nonlinearity). This connecting orbit is expected to be

structurally stable, in the sense that the orbit persists under small perturbations of U_, U+,

and s [subject to the jump condition Eq. (2.4)] and under changes of the viscosity matrix

D. By contrast, a connecting orbit between two saddle points is structurally unstable.

To be precise, structural stability holds if the dynamical system is Morse-Smale [12].

For example, the system is not Morse-Smale if some critical point is non-hyperbolic (the

real part of an eigenvalue is zero) or if there is a saddle-saddle connection; in these cases

bifurcation is expected. In the context of conservation laws, the critical point U+ is non-

hyperbolic if Ai(U+) = s for some i, i.e., at boundaries between different types of discon-

-10-



Transitional Waves Isaacson, Marchesin, Plohr

tinuities. (These points are marked as dots in Fig. 3 below.) More generally, a boundary

occurs if any critical point Uc, which corresponds to a discontinuity with speed & from U_

to Ut, has an eigenvalue p with vanishing real part. In addition, bifurcation is expected

if there is a saddle-saddle connection between two critical points. For instance, consider a

1-shock wave from U_ to U+ such that an orbit connects another saddle point U, to U+;

then U+ can be a boundary between admissible 1-shock waves and inadmissible ones [34,

10]. (As discussed in §5, this occurs in Fig. 8, with U-, U+, and U, being points L, C,

and A 1 .)

We see that saddle-saddle connecting orbits have two related roles in solving Rie-

mann problems. The first is to cause bifurcations between admissible and inadmissible

shock waves. The second is as transitional shock waves that appear in Riemann solutions.

The structural instability of saddle-saddle connections indicates that only special crossing

discontinuities should have viscous profiles. Thus the class of transitional shock waves is

sensitive to the precise form of the parabolic terms in Eq. (2.9): if the solution of a Rie-

mann problem contains a transitional shock wave, then the intermediate constant states

in the solution are changed if the viscosity matrix is altered. In particular, a numerical

method for solving conservation laws might select waves that are not physical if it relies

on artificial viscosity. (This was emphasized to us by Schaeffer and Shearer [30].)

For completeness, we briefly describe the role of admissible totally compressive shock

waves in Riemann problems. (We refer to Ref. [18] for an example of a system of conser-

vation laws in which totally compressive waves arise; see also Ref. [32] for a discussion.)

According to the inequalities (2.13) and (2.14), U_ and U+ are both nodes, so that there is

an infinite number of orbits connecting them. These inequalities also imply that a totally

compressive wave cannot be preceded or followed by any other wave. In other words, there

is only one wave group when a totally compressive wave occurs. Thus the utility of such

waves for solving Riemann problems is limited: the set of right states UR = U+ for which

the Riemann solution contains a totally compressive wave is one dimensional, comprising

segments along the Hugoniot locus through UL = U_.

Let us presume that when UR is perturbed from this set, a solution of the Riemann

problem with data UL and UR exists and depends LlC -continuously on UR. Then the

-11-4
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perturbed solution must contain a 1-wave group with a 1-shock wave on its left and a

2-wave group with a 2-shock wave on its right, with shock speeds approximately the same

as that of the totally compressive wave. In the limit as UR moves back onto the segment

of totally compressive waves, the critical points corresponding to the Lax shock waves

remain joined by orbits. In particular, the dynamical system for the totally compressive

wave must contain other critical points besides U_ and U+: the repelling node U_ is

also connected to a saddle point, and a saddle point connects to the attracting node V+.

From this perspective, a totally compressive wave should be regarded as containing 1- and

2-shock waves, not as a new type of shock wave.

3. Transitional Shock Waves in Quadratic Models

In this section, we examine crossing discontinuities that possess viscous profiles. These

profiles correspond to saddle-saddle connecting orbits for the dynamical system (2.10).

Our results are limited to systems of two conservation laws with quadratic fluxes, which

are described in §3a. Nevertheless, we believe that the results reflect the structure of

transitional shock waves for general systems of two conservation laws. (See §5 for further

discussion.)

The motivation for our analysis derives from the theory of polynomial dynamical

systems in the plane: for certain quadratic systems, a saddle-saddle connecting orbit must

be a straight line segment. In §3b, therefore, we determine conditions under which a

discontinuity (not necessarily a crossing discontinuity) possesses a viscous profile that lies

along a straight line. Then, in §3c, we state sufficient conditions for a quadratic model to

have the property that a viscous profile for a crossing discontinuity must be a straight line

segment.

3a. Quadratic Models

A quadratic model is a system of two conservation laws

U, + F(U)z = 0 (3.1)

in which the flux is a quadratic function: writing U = (u, v)T and F = (f, g)T,

f(u,v) = 1(au 2 + 2b,uv + cIv 2) + dlu + elv , (3.2)

-12-
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9(u, v) = 1(a2u 2 + 2b2uv + c2v 2 ) + d2u + e 2 v. (3.3)

Evidently, a quadratic flux approximates the flux for a general system of two conservation

laws in the neighborhood of a point. When the linear terms are abent, the two character-

istic speeds coincide at U = 0; more generally, any (nondegenerate) quadratic model fails

to be strictly hyperbolic somewhere in the u-v plane. Furthermore, elliptic regions, where

the characteristic speeds are complex, might occur. The iemann problem for quadratic

models has been studied by Gomes, H. Holden, L. Holden, Isaacson, Marchesin, Paes-

Leme, Plohr, Rascle, Schaeffer, Serre, Shearer, and Temple [19, 31, 35, 18, 20, 21, 13,

29, 33, 32, 10, 14, 34].

In the study of Riemann problems, the solutions of the Rankine-Hugoniot condi-

tion (2.4) play an important role. For systems of two conservation laws, it is convenient

to eliminate the speed s from the Rankine-Hugoniot condition. With U0 = U. regarded

as fixed, this yields a single equation for states U - U+ in the Hugoniot locus of U0:

H(=o'VO)(u'V) 0 , (3.4)

where

H,,,.) (u, v)=(u-uo) [g(u, v) - g(uo,vo)] - (v - vo)[f(u,v) - f(uo,vo)] (3.5)

is the Hugoniot function. Similarly, the shock speed s is given by

s= (u - Uo) [(u, v) - f(uo,vo)] + (v - vo)[g(u, v) - g(uo, vo)] (3.6)(U - U)2 + (V, - V)2
An example of a Hugoniot locus is drawn in Fig. 3. For quadratic models, H is a cubic

polynonial in the two variables u and v. Moreover [18], the Hugoniot locus of Uo is

parameterized by angle in the polar coordinate system centered at UO, except when the

Hugoniot locus contains a line through U0 . To explain this result, we first introduce some

convenient notation and terminology.

Associated to a given quadratic model are the functions a, 0, It, and ,, , ', which

are defined by

a(w)= .{(a2 + bi)cos2V + (b2 - a) sin2p + a2 - b, (3.7)

6(W) = {(b2 + cl) cos p2 + (c2 - bl) sin2p + b2 - 1 }, (3.8)

,y(W)= {(d2 +el)cos2 +(e 2 -dl)sin2 +d2-el} , (3.9)

-13-
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bifurcation lines/

UO/

Hugoniot locus coincidence locus

Fig. 3: Bifurcation lines for a quadratic model, and the Hugoniot
locus for a representative point UO. Dots along the Hugoniot locus
demarcate segments with different shock types. Also shown is the
coincidence locus, where the characteristic speeds coincide; inside
of this curve, the system is elliptic.

and

&()= ~.(a, - b2 ) cos 2V + (b, + a2) sin 2 + a, + 621 (3.10)

= 1(,- c2) cos 2P + (cj + b2) sin2po + b1 + C2 1 (3.11)

j() {(d, - e2 ) cos 29 +(el +d 2 ) sin 2v +di +e 2} (3.12)

If we set U = U0 + R (cos V, sin p)T, then the Hugoniot function is

8 = 11 &()cs4 + &) sin ] + d-(,)uo + /3(,)vo + %p() . (3.14)

-14-
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An angle V is called an asymptotic angle when

a(w) cos w + fl(w) sin -- 0, (3.15)

and it is called a characteristic angle for a given state UO when

cpUO + ()vo + Y(V) = 0. (3.16)

The set of states U0 satisfying Eq. (3.16) constitutes the characteristic line C(W) associated

with (p. At points along such a line, one of the eigenvectors has inclination angle V. The

characteristic line associated with an asymptotic angle is called a bifurcation line (see

Fig. 3). Notice that asymptotic angles and bifurcation lines depend solely on the coefficients

defining the model, not on U0 . We remark that the envelope of the characteristic lines is

the coincidence locus, i.e., points where the eigenvalues coincide; this is demonstrated in

App. B.1. In particular, bifurcation lines are tangent to the coincidence locus.

The parameterization of Hugoniot loci is a consequence of Eq. (3.13):

Proposition 3.1 ([18]):

(a) Suppose that V is not an asymptotic angle. Then the line through Uo at angle V

intersects the Hugoniot locus of U0 at a state U : Uo if and only if 'P is not a

characteristic angle for Uo.

(b) Suppose that V is an asymptotic angle. Then the line through Uo at angle V intersects

the Hugoniot locus of Uo at a state U 5 Uo if and only if Uo lies on the bifurcation

line associated with p, in which case the Hugoniot locus contains this line.

Remarks:

(1) If U0 belongs to the hyperbolic region, the Hugoniot locus through Uo has two

branches; these branches are tangent at UO to the right eigenvectors of F(Uo). According

to Eq. (3.13), then, (cos W, sin p)T is a right eigenvector if and only if V is a characteristic

angle for U0. By Eq. (3.14), the corresponding eigenvalue is \ = &(W)uo + &()vo + i(w).

(2) The Hugoniot locus approaches infinity at the asymptotic angles (as in Fig. 3).

Eq. (3.15) is a cubic equation for tan o, so that generically the number of bifurcation

lines is one or three.
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(3) The Hugoniot locus for a state U0 has a secondary bifurcation point if and only if Uo

lies on a bifurcation line, in which case the secondary bifurcation occurs on this line.

(4) For later purposes (see Lemma 3.4), we note that

,(w) cosp + fl(w) sin, = (- sin , coso)F'(O)P • (cs 2 (3.17)\ sinw) 3.7

and

e(w)cos v + j(s) sinw = (cos o,sin )F"(0) • . cos 2 (3.1)
\ sinW (3.18

When studying viscous profiles for quadratic models, we take the viscosity matrix D

to be constant; this is reasonable because quadratic models arise as expansions. Then

Eq. (2.10) becomes the planar, autonomous system of ordinary differential equations

D ()) - -s [U(C) - U-] + F(U(C)) - F(U_) . (3.19)

3b. Viscous Profiles

A viscous profile for a crossing discontinuity is defined by an orbit that joins two

saddle points. For dynamical systems that are quadratic gradients, Chicone [2] has shown

that every saddle-saddle connection is a straight line segment. With this in mind, we first

construct all discontinuities (not necessarily crossing discontinuities) that have straight-

line orbits. This approach yields a large class of transitional shock waves, as discussed in

the next subsection.

For convenience, we use the notation U = 4(U+ + U.) for the average of, and AU =

U+ - U_ for the difference between, two states U+ and U_. The construction relies on an

obvious property of quadratic functions.

Lemma 3.2: Suppose Q is a quadratic function such that Q(U+) - Q(U_). Then

Q(U + pA U) = Q(U) + p2Q"(1U). (A U) 2 . (3.20)

-16-
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Proposition 3.3: Let F be quadratic, and suppose that s, U-, and U+ 0 U_ satisfy the

Rankine-Hugoniot condition (2.4). Then the straight line segment between U_ and U+ is

a connecting orbit for Eq. (3.19) if and only if there is a constant p 6 0 such that

pD AU = F"(0)- (AU) 2 . (3.21)

The orbit is traversed from U_ to U+ if and only if p < 0.

Proof: An orbit connecting U_ and U+ along a line takes the form

U(0 = + p( AU (3.22)

with - < p(4) < L. If the quadratic function Q in Lemma 3.2 is defined by Q(U) =

-s(U - U-) + F(U) - F(U_), then the dynamical system (3.19) becomes DO Q(U),

pr i.e.,

AD AU =Q(T) + 4p Q"(U). (AU) 2 . (3.23)

But 0 = Q(U_) = Q(U + IQ"(-). (AU) 2 and Q"(-J) = F"(0), so

6D AU -- 4 (p2 - ) F"(0) . (AU) 2 . (3.24)

This equation is satisfied if Eq. (3.21) holds and

(3.25)

Provided that p # 0, Eq. (3.25) has a solution with p varying between - and L. Con-

versely, if p parameterizes a connecting orbit along a straight line, Eq. (3.24) shows that

Eq. (3.25) must hold for some p 0, and therefore that Eq. (3.21) is satisfied. The pa-

rameter p increases from -. to i.e., the orbit is traversed from U_ to U+, if and only

if. < 0. 0

The quantity p is related to the eigenvalues for the linearized differential equations at

the critical points, as we now show. Suppose that the straight line segment from U_ to U+

is an orbit; then it must coincide with an unstable manifold for U_ and a stable manifold

for U+. Therefore, by Eq. (2.12),

[- - F'(U+) AU = p.D AU (3.26)
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with A+ < 0 < p-. Subtracting these two equations yields

[F'(U+) - F'(U_)] AU = (p+ - p )D AU. (3.27)

Since F'(U+) - F'(U_) F"(O)AU, we obtain Eq. (3.21) with p = - .. ) < 0.

Moreover, adding Eqs. (3.26) shows that

[-s + F'(U)] AU = Ls+ + pA)D AU. (3.28)

According to the midpoint rule for quadratic models [181, the left-hand side vanishes when

U_, U+, and s satisfy the Rankine-Hugoniot condition:

1.I/2

sAU = F(U+) - F(U_) = F'(U+ pAU)AUdp = F'(TJ)AU . (3.29)

Consequently, p+ + pj_ = 0, so that I = ,+ = -p-.

As the next lemma shows, solutions of Eq. (3.21) are related to the asymptotic angles

for the quadratic model with the flux function D - 'F. Because these angles are determined

by the viscosity matrix D, as well as by F, we call them viscosity angles. Also, the

characteristic line C(p) associated with a viscosity angle is called a viscosity line.

Lemma 3.4: Let U+ lie on the line through U_ at angle V, with U+ 0 U_. Then

Eq. (3.21) holds for some p if and only if V is a viscosity angle.

Proof: Let AU = R(cosp, sin V)T. Then Eq. (3.21) holds for some p if and only if

0 - (-sinW, cos p)D - 1F"(0)• (cos V (3.30)\ sinw 3.0

Comparing this with Eq. (3.17), we see that Eq. (3.21) holds if and only if P is an asymp-

totic angle for the quadratic model with flux D- 1 F. D

The existence of straight-line orbits depends also on the eigenvalue p. To determine

a formula for p, suppose that p is a viscosity angle and that U+ lies on the line through

U_ at angle p, say U+ = U_ + R(cosp,sin )T . Then Eqs. (3.21) and (3.18) imply that

/I= 1R[&D(O)COS V + D(V) sin ] (3.31)
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here 6D and fD are the functions associated with D-IF that are defined (for F) in

Eqs. (3.10) and (3.11). A viscosity angle V is said to be exceptional if &Dv)cos V +

PD(so) sin V = 0: no straight-line profiles are possible at an exceptional viscosity angle

because p = 0. Otherwise, if V is not exceptional, then the sign of p is determined by the

sign of R. Thus p < 0 on a particular open ray with respect to U_. For simplicity, we say

that U+ is correctly oriented with respect to U_ along the viscosity line if it lies in this

ray.

The construction of discontinuities with straight-line profiles proceeds as follows. The

line at each viscosity angle is drawn through U0, and its intersection U with the Hugoniot

locus through U0 is found; then U and Uo are joined by a profile along this direction. Of

course, this intersection might not exist; the precise conditions are consequences of the

characterization of Hugoniot loci given in Prop. 3.1.

Theorem 3.5: Assume that the viscosity matrix D is invertible, and consider a fixed

viscosity angle p for D that is not exceptional. Let £(sO) be the viscosity line associated

with p.

(a) Suppose that w is not an asymptotic angle. Then Uo is connected to some U # Uo on

the Hugoniot locus of Uo by a connecting orbit lying along a straight line at angle o

if and only if Uo £(VC). In this case, the corresponding state U is unique.

(b) Suppose that p is an asymptotic angle. (Thus £(wo) is a bifurcation line.) Then Uo is

connected to some U 6 Uo on the Hugoniot locus of Uo by a connecting orbit lying

along a straight line at angle w if and only if Uo E £(Wo). In this case, the corresponding

states U comprise all of (cp).

The connecting orbit is traversed from Uo to U if and only if U is correctly oriented with

respect to U0.

Part (a) of this theorem is illustrated in Fig. 4, which shows three discontinuities that

possess straight-line profiles. Part (b) is nongeneric, but it arises when D is a multiple of

the identity, which is the simplest choice. Bifurcations of saddle-saddle connections under

cubic perturbations has been studied in the case D = I in Ref. [36].
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strai -line profiles ..
-4"° /

• ----------

/ x

Fig. 4: Discontinuities with straight-line profiles. The dashed lines
are drawn through U0 at the viscosity angles; arrows indicate the
direction of the connecting orbit. The discontinuity corresponding
to point X is of crossing type, while point 1 is the right state of a
1-shock and point 2 is the left state of a 2-shock.

3c. Saddle-Saddle Connecting Orbits

Theorem 3.5 characterizes when a discontinuity in a quadratic model possesses a

straight-line profile. To apply it to solving Riemann problems, we must account for the

wave type of the discontinuity, i.e., the relationships between the propagation speed and

the characteristic speeds on the two sides of the discontinuity. Indeed, Theorem 3.5 al-

lows a discontinuity with a straight-line profile to be of either Lax or crossing type. Lax

discontinuities with straight-line profiles, however, constitute only a small subset of the

Lax discontinuities with viscous profiles. This is because saddle-node connecting orbits

are structurally stable. By contrast, profiles for crossing discontinuities, which correspond
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to saddle-saddle connecting orbits, do not persist when the discontinuity suffers a generic

perturbation.

In this subsection, we describe the set of crossing discontinuities with straight-line

profiles. Furthermore, for certain classes of quadratic models, we show that the only

crossing discontinuities with viscous profiles take the form constructed in Theorem 3.5.

Within these classes, therefore, the set of points (UL, s, UR) corresponding to transitional

shock waves has codimension 3, whereas the set corresponding to Lax shock waves has

codimension 2.

Assume that the hypotheses of Theorem 3.5 hold. In both cases (a) and (b), any point

UO in a certain set is connected to some U # U0 by a straight-line profile at angle V. We

define the transitional region for the viscosity angle V to be the subset of points U0 for

which at least one of these discontinuities is of crossing type. Thus the transitional region

is defined by the inequalities

A1(Uo) < s < A2(Uo) , (3.32)

AI(U) < s < A2(U) , (3.33)

and the requirement of being correctly oriented. In the situation of part (a), the transitional

region is an open subset of the plane, and to each of its points corresponds a unique

admissible crossing discontinuity for V. In fact, the transitional region is a wedge, as

we show presently. This generic case is illustrated in Fig. 5. Similarly, for part (b), the

transitional region is a ray of the bifurcation line £(W), and to each point in this set

corresponds an open interval of admissible crossing discontinuities.

The precise form of the boundary of the transitional region is determined as follows.

We consider a particular viscosity angle Vp and allow the point U0 to vary; the correspond-

ing point U = Uo + R (cos V, sin W)T is joined to U0 by a straight-line profile. The boundary

of the transitional region consists of points UO for which some of the inequalities (3.32)

and (3.33) becomes equalities, so that the speed of the shock coincides with the charac-

teristic speed at either the left or right state: det [-s + F'(U,)] = 0, with U, being U0

or U. By Eqs. (3.13) and (3.14) each of these two equations is quadratic in u0 and v0.

Points U9 on the viscosity line satisfy these equations, so that each equation factors into
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a product of linear polynomials; i.e., each solution set is a pair of crossed lines. Notice,

however, that the solutions on the viscosity line are irrelevant because R = 0 along this

line. We conclude that the boundary of the transitional region is contained in two crossed

lines. One ray of each line corresponds to profiles that are correctly oriented, so that the

transitional region is a wedge. In the case of part (b), the wedge collapses to a single ray.

transitional map T

Fig. 5: Transitional regions. A point in region T or T2 is the left
state for a transitional shock wave. The corresponding right state is
given by the transitional map indicated by the dashed lines, which
lie at viscosity angles. One of the three viscosity angles does not
lead to transitional shock waves, so that there is no corresponding
transitional region.

We now turn attention to the question of whether all saddle-saddle connections are

straight line segments, so that the transitional shock waves constructed above are the

only ones. This is true for certain classes of quadratic models and certain choices for the

viscosity matrix. Some of the results that we describe concern quadratic models that are

-22-
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strictly hyperbolic except at U = 0. Schaeffer and Shearer [311 have classified such models;

they show that a linear change of dependent variables U brings the system of conservation

laws to a normal form in which the flux is a gradient, i.e., F(U) = C'(U). The qualitative

structure of solutions falls into four categories, corresponding to four regions in parameter

space, which are labeled Cases I-IV.

When the flux is a gradient, the vector field on the right-hand side of the dynamical

system (3.19) is also a gradient: with G defined by

G(U,,) = c(U,,)- C(U_,,_)- _18 [(,, -U_)2 + (V _ V,_)2]

- f(u-',v-)(u - u-) - g(u_-,v)(v - v_) , (3.34)

viscous profiles satisfy

D U(t) = G'(U(C)) . (3.35)

In particular, when the viscosity matrix D is a multiple of the identity matrix, the dynam-

ical system (3.35) is a quadratic gradient system in the plane. Such systems have been

studied in connection with Hilbert's 16th problem (see, e.g., Chicone and Jinghuang [3]).

The following result of Chicone [21 bears directly on our application:

Theorem 3.6 (Chicone): For a quadratic gradient system in the plane, an orbit con-

necting two saddle points is a straight line segment.

Notice that when D is a multiple of the identity matrix, viscosity angles coincide with

asymptotic angles. Therefore part (b) of Theorem 3.5 yields the following.

Corollary 3.7: Suppose that the flux for a quadratic model is a gradient. Then if the

viscosity matrix D is a multiple of the identity matrix, any viscous profile for a crossing

discontinuity must lie along a straight line. Furthermore, a crossing discontinuity con-

necting U_ to U+ has a viscous profile if and only if U.. and U+ both lie on the same

bifurcation line and U+ is correctly oriented with respect to U_.

For general choices of D, however, viscosity angles differ from asymptotic angles, so

that part (a) of Theorem 3.5 applies instead. The class of discontinuities with straight-line

profiles then takes a different form: for each state U_ in a certain open set, there is a finite

set of states U+ corresponding to such discontinuities. In this sense, the case when D is
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a multiple of the identity matrix is not representative of the generic case. Extension of

Corollary 3.7 to more general viscosity matrices requires generalizing Chicone's Theorem.

Recently, Gomes [9, 11] has proved one such generalization:

Theorem 3.8 (Gomes): Consider a quadratic dynamical system in the plane such that

there are more than two critical points at infinity. If two saddle points are connected by

an orbit, then the straight line segment joining them is also an orbit. Moreover, if the

saddle points are connected by an orbit distinct from the straight line segment, then the

region bounded by these orbits contains a critical point for which the eigenvalues are not

real In particular, if all critical points.in the finite plane have real eigenvalues, then any

orbit connecting two saddle points is a straight line segment.

Based on this result and part (a) of Theorem 3.5, we can extend Corollary 3.7 to allow

for symmetric, positive definite viscosity matrices, provided that there is more than one

viscosity angle.

Corollary 3.9: Suppose that the flux for a quadratic model is a gradient and that the

viscosity matrix D is symmetric and positive definite. Suppose also that there is more

than one viscosity angle. Then any viscous profile for a crossing discontinuity must lie

along a straight line.

Proof: See App. A. 0

We emphasize, however, that for some quadratic models, saddle-saddle connecting

orbits need not be straight line segments. Azevedo [11 has given such an example: for a

certain quadratic model with an elliptic region, U_ and U+ can be chosen so that there is

a curved saddle-saddle connecting orbit from U+ to U_ in addition to a straight-line orbit

from U_ to U+. This is possible because there is a critical point, located in the elliptic

region, that is a center. There can be up to three orbits connecting two saddle points in a

quadratic dynamical system.

Theorem 3.8 shows that the features observed in this example are true more generally:

if two saddle points are connected by a curved orbit, then they are joined also by a straight-

line connection oriented in the opposite direction. In particular, the set of transitional

shock waves with curved saddle-saddle connections has higher codimension than has the set
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with straight-line connections. Therefore, the following results hold for general quadratic

conservation laws and viscosity matrices such that there is more than one viscosity angle:

the left and right states of a transitional shock wave must lie along a line parallel to a

viscosity line, so that such a wave is characterized by Theorem 3.5; and transitional shock

waves generically have straight-line profiles and arise from the transitional map described

above.

4. Transitional Rarefaction Waves

In this section, we study transitional rarefaction waves for systems of two conservation

laws. Such a wave arises when an integral curve of family 2 is followed by an integral curve

of family 1 (in the direction of increasing characteristic speed). Of necessity, the two

characteristic speeds coincide at the point where these curves join. Suppose that the set of

states U at which A, (U) = A2 (U) forms a smooth curve separating a hyperbolic region from

an elliptic region. (Models for which the coincidence locus separates two regions of strict

hyperbolicity are possible also; one example is discussed in §B.2.) Fig. 6 illustrates four

conceivable configurations of rarefaction curves in the vicinity of this curve. Transitional

rarefaction waves occur in Figs. 6(b) and 6(d), while in Figs. 6(a) and 6(c) they do not.

Notice that solutions of Riemann problems are not unique if the configuration resembles

Fig. 6(b): both UM and UT serve as middle states in solutions of the Riemann problem

with data UL and UR.

In the following, we present a detailed picture of the behavior of integral curves near

the boundary of an elliptic region. We employ the approach of Palmeira [281, who studied

integral curves for quadratic models with compact elliptic regions. One consequence of

this analysis is that the configuration of Fig. 6(a) is generic, whereas points such as T

in Figs. 6(b) and 6(d) are isolated points for generic flux functions. Thus the situation

of Fig. 6(b), in which solutions of Riemann problems are not unique, does not occur

generically. We emphasize that the present results are not restricted to quadratic models:

the flux functions need satisfy only smoothness and genericity assumptions.

A rarefaction wave of a given family i is constructed using a curve in state space such
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hyperbolic
2 "" "-M

[ elliptic

(a) (b)

V hyperbolic v hyperbolic

2 ,*T I

elliptic elliptic

(c) (d)

Fig. 6: Rarefaction curves near an elliptic region. In (a) and
(c), there are no transitional rarefaction waves; in (b) and (d),
the curves through points such as T correspond to transitional
rarefaction waves. For generic fluxes, points such as T are isolated,
so that configuration (b), which causes nonuniqueness, does not
arise.

that its tangent U is a right eigenvector:

F'(U)U = Ai(U)&. (4.1)

In the neighborhood of a point of strict hyperbolicity, where the eigenvalues are real and

distinct, such a curve is constructed by choosing a smooth field ri of right eigenvectors and

integrating the differential equation

U=r,(U). (4.2)

This choice is not generally possible, however, near a point where eigenvalues coincide.
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To address this problem, we adopt a global geometric approach. Notice that the

matrix F'(U) - A,(U) has rank n - 1 in the strictly hyperbolic region, so that Eq. (4.1)

constrains U to lie in a line. From this perspective, we can construct rarefaction waves

using integral curves of line fields. There are n distinct line fields defined throughout

the strictly hyperbolic region. As we explain below, however, two of these line fields join

smoothly at the boundary of this region, where eigenvalues coincide. In fact, when n = 2,

the line fields may be regarded as projections of a single line field that is defined on a

larger space.

Remark: A line field in an n-dimensional manifold can be specified by intersecting n - 1

fields of tangent hyperplanes, so long as they are linearly independent. It proves convenient

to regard any n - 1 fields of tangent hyperplanes as defining a line field; in this case, points

where the hyperplanes are not independent are called critical points of the line field.

Let us now restrict to the case of two conservation laws. Recall that lines through the

origin in R 2 form the one-dimensional real projective space RP1 . A point in RP1 may

be identified with a normalized vector -(cos V, sin ,)T, modulo sign; as a coordinate for

RP1 , therefore, we take V E (-7r/2, r/2] to correspond to the line through the origin that

lies at angle V. In these terms, a line field on R 2 associates a point in RP1 to each point

in R 2.

Following Palmeira, we introduce the space P = R 2 x RP1 of lines through points

U = (u, v)T E R2 . The map (U, p) -* U projects P onto R 2, making P into a fiber bundle.

A line field on R2 may be regarded as associating a point (U, w(U)) E P to each point

U E R 2. An integral curve C .-* U(C) of such a line field is the projection of the curve

defined by C -* (U(C), (U(C)); this curve in P is called the lift of the curve in R 2. By

definition, &r lies at angle V, so that - sin csi + cos Vo0 = 0. This means that the vector

(T, ) is constrained to lie in the plane defined by the differential expression

- sinc Vdu + cosp dv = 0. (4.3)

In other words, the tangent vector of the lifted curve lies in the tangent plane at (U, so)
given by Eq. (4.3).
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characteristic surfacer inegracurves

critical point V coincidence locus

2
2 2

211

hyperbolic elliptic

Fig. 7: A portion of the characteristic surface in the space 1'. The
surface folds along the coincidence locus, which projects onto the
boundary of the elliptic region. Typical integral curves are drawn
on the surface; their projections onto the u-v plane are rarefaction
curves.

The line fields of interest to us are associated with eigenvectors of the Jacobian

derivative matrix for the system of conservation laws. Let (U, p) be a point in P; then

(cos V, sin V)T is a right eigenvector of F'(U) if and only if

.F'(U,,) = (-sin, ,cos V)F'(U) CsnV) (4.4)

is zero. Thus we are led to study the surface F = 0 in P; we call it the characteristic

surface for the system of conservation laws. The plane tangent to VP defined by Eq. (4.3),

when intersected with the plane tangent to the characteristic surface, defines a line field

on this surface. The integral curves of this line field project onto solutions of Eq. (4.1), by

virtue of Eq. (4.3). A portion of a characteristic surface is depicted in Fig. 7.
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Recall that (U, V) is a regular point of F if (96,,,Y',) # (0, 0, 0) at (U, w), and

that v is a regular value of F" if all points (U, V) for which F(U, V) = v are regular.

The characteristic surface is a smooth, two-dimensional manifold in a neighborhood of a

regular point, so that the whole characteristic surface is a smooth manifold provided that

v = 0 is a regular value. Sard's theorem implies that regular values are generic if the

flux F is smooth, but in general the characteristic surface might have singularities and

self-intersections. The global structure of the characteristic surface is described for some

examples in App. B.

In working with general conservation laws, it is convenient to represent the 2 x 2

matrix F'(U) as

FI(U) -_(d+a b+c) ,(4.5)

in terms of the functions a, b, c, and d of U (cf Ref. [31]). Thus

F = bcos2p - asin2W - c. (4.6)

Furthermore, in analogy with Eq. (4.4), we define the function A on P by

A(U, V) = (cos W,sin V)F'(U) sin
(sinW )

- acos 2 w + bsin2v + d. (4.7)

As seen from Eqs. (4.4) and (4.7), if a point (U, V) lies on the characteristic surface F = 0,

then A(U, V) is the eigenvalue of F'(U) for the right eigenvector (cos w, sin w)T. Moreover,

the following relations are easily verified:

(A - d)2 + (r + c) 2 = a2 + b2 ; (4.8)

- 1.)'o = A -d; (4.9)

,.row =.r + c = LAW. (4.10)

We define the coincidence locus to comprise points (U, V) on the characteristic surface

at which A1 (U) = A2(U). (See Fig. 7.) The next result characterizes this locus.
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Proposition 4.1: The coincidence locus comprises points satisfying .F = 0 and T' = 0.

The following are equivalent at a coincidence point, provided that it is a regular point of

.: (i) the projection of the characteristic surface is a fold; (ii) AV 0 0; (iii) c 6 0; and

(iv) (a,b) 0 (0,0).

Proof: The characteristic speeds coincide if and only if the discriminant discrmF'(U) =

4(a 2 + b2 - c2) vanishes. According to Eq. (4.8), a2 + b2 - c2 = (A - d) 2 on the surface

F = 0, so that by Eq. (4.9), coincidence occurs precisely when X' = 0.

In particular, the projection (U, jp) i-. U, restricted to the characteristic surface, is

singular at a coincidence point. This singularity is of fold type when ., 6 0. By

Eqs. (4.10) with F = 0, conditions (i)-(iii) are equivalent, and because a 2 + b2 = c2 at a

coincidence point, conditions (iii) and (iv) are equivalent. 0

Accordingly, the coincidence locus isa smooth curve through those coincidence points

for which the matrix

(X .' 0 (4.11)

has rank two. A sufficient condition is that the coincidence point be a regular fold point.

Vectors tangent to the coincidence locus belong to the kernel of this matrix. Notice that

a tangent vector at a regular fold point cannot be vertical (i.e., have vanishing u and v

components).

Corresponding to the integral curves in R 2 used to construct rarefaction waves are

lifted curves lying in P. In addition to satisfying Eq. (4.3), these lifted curves belong to the

characteristic surface F = 0, so that dF = 0 along them. Therefore we consider integral

curves of the line field in P given by

F,, du + .r, dv + Tv dp = 0, (4.12)

- sinV du + cosp dv = 0 . (4.13)

If such an integral curve starts at a point in the characteristic surface, then it lies entirely

within the characteristic surface, as shown in Fig. 7.

Integral curves of Eqs. (4.12) and (4.13) can be obtained locally by integrating the

differential equations

-= - ,w cos o, (4.14)
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i = - sinV, (4.15)

= ',cosw+ Fsinw. (4.16)

Indeed, this local vector field satisfies Eqs. (4.12) and (4.13), and it vanishes when these

two equations are linearly dependent. (Notice, however, that Eqs. (4.14)-(4.16) do not

define a global vector field on 7: they are not invariant under the map p- V + r.) Thus

critical points of the line field occur precisely when 7v = 0 and

X, cosV' + sinV = 0. (4.17)

We say that a point on the coincidence locus is critical whenever Eq. (4.17) holds. Such

points play a significant role in determining the structure of integral curves on the charac-

teristic surface [281. We emphasize, however, that for generic choices of the flux functions

in the conservation laws, critical points will be isolated points on the coincidence locus

(cf App. B.2). At generic points on the coincidence locus, it = 0, ) = 0, and jb 9 0;

therefore the integral curve is vertical, and the projected integral curve has a cusp (see

Fig. 7).

Also of importance is the family to which a point on the characteristic surface belongs.

Noting that coincidence of eigenvalues occurs when \ = d, we define the 1-family region

Pi in P to comprise points for which A < d; similarly, ,\ > d in the 2-family region

P2. This definition is appropriate because of the following consideration. Suppose that

(U, pi) and (U, V 2) are two points in the characteristic surface that project onto the same

point U; suppose further that (U, ol) E i and (U, V 2 ) E P2. Then A(U, V1 ) < d(U) <

A(U, 2o). Consequently, A(UV 1 ) = A(U) and A(U, 02 ) = A2(U), while (cos pi, sinVI)T

and (cos V 2, sin V 2)T are the corresponding right eigenvectors. If the system of conservation

laws is strictly hyperbolic, then the characteristic surface consists of two distinct sheets,

belonging to the regions P, and P2 . More generally, these sheets join along the coincidence

locus, as in Fig. 7.

With this notion of family, we can state the main result of this section.

Theorem 4.2: Consider a regular fold point on the coincidence locus, and suppose that

it is not critical. Then the integral curve through this point crosses the coincidence locus
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transversally, and its projection, a rarefaction curve, has a cusp. Moreover, if the integral

curve is followed in the direction of increasing eigenvalue, then it leads from the 1-family

region to the 2-family region.

Proof: According to Eqs. (4.14)-(4.16), the integral curve is vertical at such a point:

t! = 0, 6 = 0, and 0 9 0. Therefore the integral curve is transverse to the coincidence

locus, whose tangent is not vertical. Also, the integral curve leads from P, to P 2 because

the derivative of A - d along the curve is Xv 6 0. 0

Transitional rarefaction waves arise only when an integral curve leads from the 2-family

region into the 1-family region when traversed with increasing eigenvalue. By Theorem 4.2

this is possible only for integral curves through special points on the coincidence locus:

critical points, where Eq. (4.17) holds; non-fold points, where .F,, = 0 (which usually

correspond to cusps in the coincidence locus, as projected onto state space); and irregular

points, where (.%*., 7.) = (0, 0) (at which the characteristic surface need not be a manifold).

Such singular points, being characterized by extra functional conditions, generically are

isolated points on the coincidence locus.

Corollary 4.3: For generic choices of the flux functions that define the system of

conservation laws, transitional rarefaction waves arise only from integral curves through

isolated points on the coincidence locus.

Rarefaction waves correspond to segments of integral curves along which the charac-

teristic speed does not decrease. To reflect this, the integral curves shown in Fig. 7 have

been oriented according to the variation of A. The orientation changes at points where

A (U)ri(U) = 0, which are called inflection points by analogy with scalar conservation

laws. In the present geometric framework, the inflection locus is defined to be points on

the characteristic surface for which dA = 0 in the direction of the integral curve, i.e.,

det ( sin V cos V 0 =0. (4.18)

The following result helps elucidate the behavior of integral curves near critical points.

Proposition 4.4: A regular fold point on the coincidence locus is a point of inflection if

and only if it is a critical point.
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Proof- When Y', = 0, Eq. (4.18) becomes A, [. cos w + Y' sin V] = 0. 0

As illustrated in Fig. 7, the inflection locus passing through the critical point permits a

transitional rarefaction to occur even though neighboring integral curves lead from family

1 to family 2.

The constructions of this section have been applied by Palmeira to quadratic con-

servation laws [28]. (See the App. B.1 for another presentation of these computations.)

Furthermore, Palmeira shows that the results obtained for quadratic models are stable

under perturbations of the flux functions (in the C 3 Whitney topology). This is a first

step in proving stability of solutions of Riemann problems with respect to changes in the

conservation laws.

5. The Role of Transitional Waves in Solving Riemann Problems

A solution of a Riemann problem consists of a sequence of rarefaction waves and

discontinuities. For various systems (e.g., Refs. [35, 13, 9, 10, 14, 34]), the general

Riemann problem cannot be solved globally if only Lax shock waves with viscous profiles

are used: for certain left states, there are regions of right states for which there is no

solution. In this section, we explain how transitional waves can be used to overcome this

difficulty. The transitional shock waves define a certain map in state space; for simplicity,

we describe this map for systems of two conservation laws, although a straightforward

generalization can be made to systems of arbitrary size. We begin by recalling the classical

method for constructing local solutions of Riemann problems [25, 26].

The 1-wave curve based upon a state Uo consists of those states to which U0 can be

joined by a succession of 1-waves; a similar definition holds for 2-waves. Near U0 , each

wave curve consists of a shock branch joined to a rarefaction branch (if U0 is not on the

inflection locus); an eigenvector of F(Uo) is tangent to these branches at U0 . To solve the

Riemann problem near a left state UL, the standard construction is to build the 1-wave

curve based upon UL, and then to build the 2-wave curve based upon each middle state UM

on the 1-wave curve. This is illustrated in Fig. 8 in the vicinity of UL. (In Figs. 8 and 9,

1-wave curves are thicker than 2-wave curves, with solid curves being rarefaction curves

and dashed curves being shock curves.) In this way, all neighboring states UR are joined
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to UL by a 1-wave followed by a 2-wave. To carry out this procedure globally, detached

branches of the wave curves must also be used. For example, a state UR in the upper left

corner of Fig. 8 is reached by a nonlocal 1-shock wave, UM being a point on the Hugoniot

branch above point C, followed by a 2-wave. As mentioned above, however, there might

be right states that are not reached in this manner, such as points in the strip bounded

by the 2-wave curves through B and C. To complete the solution, transitional waves are

employed.

-. '

""-" " It ,

% % 1

D'.1 %%

% %

Fig. 8: Solutions of Riemann problems for a particular left state
UL. The system is a quadratic model with an elliptic region; all
shock waves admit viscous profiles for a viscosity matrix D that
differs from the identity. Points between B and C correspond to
transitional shock waves from points between A2 and A,. Pointsbetween B and D correspond to nonlocal 2-shock waves from UL,,~while points above C are nonlocal 1-shock waves.

First we describe the use of transitional shock waves. Based on part (a) of Theorem 3.5
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for quadratic models, the class of transitional shock waves for generic flux functions is

characterized by a transitional map X defined on an open set T, the transitional region.

The transitional map carries each point U in T to a unique point U' = X(U) in T' = X[T]

such that U and U' are connected by an admissible crossing discontinuity. We contrast this

picture with that of Lax waves, where to each state there corresponds a curve of states.

More generally, there might be several transitional maps. (For quadratic models, different

maps are associated with different viscosity angles.)

Remark: We expect this map to be stable under small perturbations of the flux functions

and of the viscosity matrix. Techniques such as those used in Ref. [36] should suffice to

establish stability. This property is crucial to insure that these new shock waves have

physical significance.

Transitional shock waves are used to solve Riemann problems in the following manner.

For a given left state UL, the 1-wave curve based on UL is built. If the curve passes through

the region T, then each state UvI on the curve in this region is joined to its image state

U = X(UM) by a transitional shock wave. Of course, the speed of this wave must exceed

the speed of the 1-wave from UL to UM. Under this restriction, an image curve in the

region T' is generated. Finally, 2-wave curves are drawn from points on this transitional

curve, thus covering a region in state space. This construction is shown in Fig. 8 (the

transitional regions are the same as in Fig. 5): the 1-wave curve passes through region T1 ,

and the portion (AA 2 ) is mapped onto the curve (CB). Therefore the strip left uncovered

by Lax waves is filled by solutions composed of three wave groups, a 1-wave, a transitional

shock wave, and a 2-wave. The procedure just outlined can be generalized to systems of

arbitrary size.

Notice that because the transitional wave from A1 to C has the same speed as the

1-shock wave from L to A,, the points L, A1 , and C are all critical points of the dynamical

system (2.10). This system has a saddle-saddle connection between A1 and C, so that it is

subject to bifurcation. Indeed, points on the branch of 1-shock waves above C are joined

to UL by a node-saddle connecting orbit, whereas points on the continuation of this branch

below C are not, even though they correspond to Lax waves. Similarly, the transitional
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wave from A2 to B is an endpoint of the transitional curve because the critical point B

is not hyperbolic. The curve joining points B and D is reached by (admissible) nonlocal

2-shock waves.

The picture just described is different from that obtained in the nongeneric case of

Theorem 3.5: in part (b), the transitional region is not open, being open rays of the

viscosity lines, and the corresponding transitional shock waves comprise open segments

on these lines. This situation arises in several examples in which transitional waves are

used [35, 9, 10, 341 because D is taken to be the identity matrix. Parameter and equation

counting for saddle-saddle connecting orbits are inconsistent with this picture [301. This

nongeneric case is illustrated in Fig. 9, which depicts the limits of solutions in Fig. 8 as D

approaches the identity matrix: the curve (AA2) collapses to a single point A, which is

the left state for transitional shock waves to points along (CB).

Figure 9 represents part of the solution for a symmetric quadratic model in Case II [21];

this solution enforces the viscous profile admissibility criterion. In Refs. [21, 32], solutions

for Case II quadratic models are obtained using all shock waves obeying Lax's characteristic

inequalities, regardless of whether these shock waves possess viscous profiles. In fact,

nonlocal 1- and 2-shock waves that do not have viscous profiles appear in these solutions,

such as nonlocal 1-shock waves on the Hugoniot branch below point C and nonlocal 2-shock

waves to points near (CB) in Fig. 8. This is an instructive example in which two distinct

solutions of the general Riemann problem arise from different choices of an admissibility

criterion. Each of these choices yields a solution that is complete and unique.

Remark: We expect that standard numerical methods employed in solving the Cauchy

problem for conservation laws are inaccurate if the solution involves transitional or non-

local shock waves. The reasons are as follows. First, many numerical schemes spread a

strong shock wave across several mesh zones, replacing it with many weak shock waves,

each approximated by the local rarefaction curve; but this approximation is not valid for

nonlocal shock waves, which are non-contractable. (Methods such as the random choice

method [8] do not make this approximation.) Second, transitional shock waves are sensitive

to the precise form of the diffusion term (cf Figs. 8 and 9). In contrast to Lax shock waves,

which are affected only by the overall magnitude of the viscosity, the asymptotic states in
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Fig. 9: Solutions of Riemann problems for a homogeneous quad-

ratic model in Case 11 and a particular left state UL. All shock
waves admit viscous profiles for D = 1. Points between B and C
correspond to transitional shock waves from point A.

a crossing shock wave are dependent on the relative sizes of components of the viscosity

matrix. Dissipative numerical schemes on coarse grids calculate transitional shock waves

that correspond to the numerical viscosity, rather than the physical viscosity.

The usage of transitional rarefaction waves in solving Riemann problems is simpler;

it resembles the degenerate case for transitional shock waves. As shown in §4, transitional

rarefaction curves emanate from isolated points on the coincidence locus. For instance, in

Case II quadratic models there is a single transitional rarefaction curve; in Fig. 8 it passes

tangent to the top of the elliptic boundary, with the 2-family portion extending to the left,

and the 1-family portion extending to the right. Suppose that the 1-wave curve through

UL intersects the 2-family portion of the transitional curve at UM; then the 1-wave from
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UL to UA can be followed by a transitional rarefaction wave from UM to a point UM0

on the i-family portion, which in turn can be followed by a 2-wave. This construction is

completely analogous to that used in specific examples [21, 321.

In summary, a transitional wave can appear between a 1-wave group and a 2-wave

group in a solution of a Riemann problem. The procedure for constructing such solutions

is to associate a transitional wave curve to the left state UL. This transitional curve

is obtained by applying the transitional map to the 1-wave curve in the case of shock

waves, and by following an integral curve in the case of rarefaction waves. More generally,

composite waves containing transitional waves along with Lax waves can occur [17, 14];

see Figs. 2(c) and (d).

6. Summary

Transitional waves, which are not associated with a particular characteristic family,

arise in non-strictly-hyperbolic systems of conservation laws. Because of such waves, the

solution of a Riemann problem for a system of n conservation laws might contain more

than n wave groups.

Transitional shock waves are discontinuous solutions that possess viscous profiles cor-

responding to saddle-saddle connecting orbits. For transitional shock waves, the association

of UL with UR is a map defined on a region in state space (for generic viscosity matrices);

this has been demonstrated explicitly for conservation laws with quadratic flux functions,

where saddle-saddle connecting orbits are straight line segments.

Transitional rarefaction waves are continuous solutions that switch from a faster family

to a slower one. Using a geometric framework, the generic nature of rarefaction waves near

an elliptic region in systems of two conservation laws has been established: if a rarefaction

curve intersects the elliptic boundary, then except at isolated points it switches from a

slower family to a faster one and forms a cusp; the exceptional points are where the

rarefaction curve is transitional and passes tangent to the elliptic region.

Transitional waves play a significant role in solving the Riemann problem for non-

strictly-hyperbolic systems. This is illustrated in a quadratic model for which the general

Riemann problem has two distinct solutions, both complete and unique, depending on the
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admissibility criterion imposed on shock waves. One solution uses all waves satisfying the

characteristic criterion, some of which do not possess viscous profiles; the other uses the

viscous profile criterion and requires transitional shock waves.
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Appendix A. Proof of Corollary 3.9

In this appendix, we give a proof of Corollary 3.9 using Gomes' Theorem 3.8. Consider

a quadratic dynamical system in the plane

= P(u,v) , (A.1)

-= Q(u, v) , (A.2)

where P and Q are quadratic polynomials in u and v and the dot denotes differentiation

with respect to the independent variable t. The behavior of solutions is affected not only

by critical points (u, vc) in the finite plane, where P(uc, vc) = 0 and Q(u,, v,) = 0, but

also by the behavior of P and Q near infinity, i.e., the asymptotic directions of the vector

field.

To study the behavior near infinity, we make a (singular) change of independent

variables from to q by setting d/dtj = R-ld/d , where R = (u 2 + v2) 1. This allows us

to exploit the approximate homogeneity of P and Q for large R:

P(u,v) =R2{P2(u/R,v/R) +O(R-1)} , (A.3)

Q(u, v) = R2 {Q2(u/R, v/R) + O(R - I  , (A.4)
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P2 and Q2 being the homogeneous quadratic parts of P and Q, respectively. Introducing

polar coordinates, u = R cos V and v = R sin V, and denoting p = R - 1, a straightforward

calculation shows that

C _ cos Q2 (cos V, sin V) - sin V P 2 (cos W, sin W) + O(p), (A.5)

p' = -P{Cos VP 2 (cos, sin V) + sinVQ 2 (cosV,sinV) + O(p)} , (A.6)

where the prime denotes differentiation with respect to q. Therefore a critical point at

infinity occurs if and only if p = 0 and

cosp Q2(cos V, sin 0) - sin w P2(cos V, sino) - 0. (A.7)

Eq. (A.7) is a homogeneous cubic polynomial in sinV and cos W; its roots give the asymp-

totic directions of the vector field. The eigenvalues of the linearization of Eqs. (A.5)

and (A.6) near a critical point at infinity are

V dICO Q2 (COSVsinw) - sin wP 2(cos V, sinV)} (A.8)= tW o 2cs i

and

P= -{cos P(cos o,sino) + sin Q2(cos ,sin )} , (A.9)

corresponding to the V and p directions.

For the dynamical system

D &( ) = -s [U( ) - U-] + F(U( )) - F(U_) (A.10)

derived from a quadratic system of conservation laws, (P 2 , Q2 )T = D - 1 F2 , where F2 is the

homogeneous quadratic part of the flux F. Let aD, PD, &D, and #D denote the functions

associated with D-IF that are defined (for F) in Eqs. (3.7), (3.8), (3.10), and (3.11). In

these terms, a critical point at infinity occurs precisely when p - 0 and

aD(() cOS V + OD(')sin V = 0, (A.11)

and the eigenvalues at such a point are

= CID(V) COS + PD(W) sin w (A.12)
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and

IA, (5()S+ 8D(p)sinw}. (A.13)

By definition, an angle Vp satisfying Eq. (A.11) is a viscosity angle; thus critical points

at infinity occur at viscosity angles. Notice that solutions of Eq. (A.11) come in pairs, Vp

and Vp + w, corresponding to antipodal critical points at infinity. Consequently, we have

demonstrated the following.

Lemma A.1: Suppose that a quadratic model has more than one viscosity line. Then

there are more than two critical points at infinity for the dynamical system (A.lO).

We remark that Eq. (A.11) is a homogeneous cubic polynomial in cos V and sin'p, and

if the roots of this cubic are simple, then p0 #0. Also, 1p 6 0 if and only if the viscosity

angle Vp is not exceptional.

Lemma A.1 verifies the hypothesis of Theorem 3.8 concerning critical points at infinity;

the next lemma verifies the hypothesis about critical points in the finite plane.

Lemma A.2: Suppose that the flux for a quadratic model is a gradient. Then if the

viscosity matrix D is symmetric and positive definite, the critical points in the finite plane

for the dynamical system (A.1O) have real eigenvalues.

Proof: The linearization of Eq. (A.10) near a critical point Uc is

D & = 1-s + F'(Uc)] (U - U,), (A.14)

so that the eigenvalues of the linearization are eigenvalues of the matrix D-1 [-s + F'(Uc)].

If D is symmetric and positive definite, then this matrix is similar to, and therefore has

the same eigenvalues as, the matrix D-i [-s + F'(Uc)]D-1. When F is a gradient, say

F = C', the Jacobian derivative F' = C" is symmetric. Consequently, the latter matrix,

being symmetric, has real eigenvalues. 0

Combining these two results with Theorem 3.8 proves Corollary 3.9.

Appendix B. Examples of Characteristic Surfaces

In this appendix, we present two examples of the constructions of §4 for rarefaction

waves.
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B.1 Quadratic Models

The approach of §4 was developed by Paimeira [28] for quadratic models with compact

elliptic regions; the results carry over to general quadratic models. Using the notation of

§3a, it is simple to verify that

Y(u, SV, V) = 0(wP)u + f3(,o)v + 'Y(V) (B.1)

and

A(u, v, V) = &(v)u + 1( Wv + (w). (B.2)

Thus the characteristic surface X = 0 is ruled: each horizontal plane V - const. intersects

the surface in a straight line a(V)u + /3(p)v + -y(W) = 0, the projection of which is a

characteristic line. The surface is regular except when a(W) = /P(w) = ,y(f) = 0 and

)r, = 0 [see Eq. (B.4) below].

The coincidence locus is defined by the equations J" = 0 and . = 0, i.e.,

a(C)u + f(P)v + /(0o) =0, (B.3)

ao'(P)u + #'(V)v + A,'(w) = 0. (B.4)

Notice that these are also the equations for the envelope of the characteristic lines. For sim-

plicity, we assume that the determinant V = a 0' -,0 a' does not vanish identically. Then

the linear equations (B.3) and (B.4) may be solved to express u and v on the coincidence

locus in terms of W: u = u,(c) and v = v,(W), where

uC = -y [0, - '8''] / V , (B.5)

= - - ' .(B.6)

Despite appearances, ) and the numerators of uc and v ara linear, not quadratic, in sin 2p

and cos 2V. Thus the coincidence locus is a conic section; any asymptotes occur at the

angles V where D( p) = 0.

A coincidence point is a fold point unless 7',,p = 0. Evaluated on the surface F= 0,

,= aou + flov + -o,
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whereoO = j.(a2 AbOO = (62 -cl), and -o = (d2 -e_1 ) am thevp-independent parts of a,

0, and -f. Therefore a coincidence point is a fold point so long as aou,(9V) +#oucGjp) +7yo #60.

A simplification occurs here also: aouC + flovc + -0 = - fi/V with q~ constant. Provided

that q7 0 0, all points on the coincidence locus are fold points.

In terms of the parameterization of the coincidence locus, any solution (u, v) of

F(Uv,) I = 0 takes the form

U = CM -OM -(B.7)

v = vc(Mp+ a~p) - c (B.8)

for some 1c E R (except when *D(W) =0). Thus V and le give global coordinates for the

characteristic surface, and x = 0 defines the coincidence locus.

To determine the differential equations for integral curves in these coordinates, we

require formulae for the derivatives u' and v' . Substituting u,, and vc into Eqs. (B.3)

and (BA4) and differentiating shows that

at4c + #Vt4 = 0, (B.9)

Q!'u + j3'vt4 = -4 [aouc + floV vo (B.10)

Thus u' = P'/V 2 and v' = c /2

Expressed in global coordinates, the equation defining integral curves is

0 = - Sin Vdu +cos (p dv

= [a coo w' +,6 sin W) dn

+ f{[ct cosp' + 0 sin pj 1/V) + [o# cosp + 0' sinoJ V]-}c d~p (B.11)

Thus integral curves may be obtained (locally) by solving

k = [a cos V + #sin91 ,q/V2 + [a' co o + f' sinp) - x. (B.13)

These equations yield a first-order, linear differential equation for Kc as a function of jp.

Critical points of the dynamical system (B.12) and (B.13) occur precisely when a cosw +
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P sinV = 0 and K = 0, i.e., at coincidence points for which i is an asymptotic angle.

In other words, the critical points occur where the bifurcation lines are tangent to the

coincidence locus.

The inflection locus is defined by Eq. (4.18). To solve this equation in the present

case, notice that A, = - y'F, = ' [q/D- V -x] and that Jr, = D-. Then the inflection

locus is determined by the equation

[()IVa + V&) cos ' + (!V' + Vf) sin]. --K [a cos p + , sin] i/V . (B.14)

The quantities in parentheses in this equation simplify to linear expressions in sin2V and

cos 2W.

B.2 Keyfltz-Kranzer Models

Systems of conservation laws of the form

u, + [uf(u, v)] = 0, (B.15)

V, + [V4'V% = 0 (B.16)

have been studied as models for elastic strings [23, 24] and for multiphase flows in petro-

leum reservoirs [16, 37, 22, 27]. For such a system,

J'(U, -- [-usin V + vcos p[4,.(u,v)cosp + 4,( u,v)sin W) (B.17)

and

A(u,v,ip) = 4(u,v) + [ucosp + vsinw][4.(u,v)cos p + 4s(u,v)sinw] . (B.18)

Therefore the characteristic surface is the intersection of two surfaces: the ruled surface

where ',.d(u, v,V) = -u sin V + v cos 4 is zero; and the surface where F,.Atct(, v, j) =

4.(u,v)cos o + 4.(u,v)sino is zero, which we call the "contact" surface because of its

relation to the linearly degenerate wave mode.

For a point (u,v, o) on the ruled surface, u = K coso and v = Ksin ( for some 0C E R,

so that X,(u,v, V) --- - o.tct(u, v,V). In particular, A = f + ui, + v,.. Similarly,
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for a point on the contact surface, 9. = -psin W and 9, = ucos W for some p E R,

)V(u, v, W) = PY,uk(u, v, '), and A = .

It follows that the coincidence locus, where both X" and A, vanish, comprises the

intersection of the ruled and contact surfaces, together with the vertical line u = 0, v = 0.

Necessarily, the characteristic surface fails to be regular at coincidence points, where it is

not a manifold; indeed, X. and -V., as well as Y,, vanish on the coincidence locus. The

projection of this locus onto the u-v plane is given by the equation

u4. + vt. = 0, (B.19)

and it is bordered on both sides by regions of strict hyperbolicity, instead of separating a

hyperbolic region from an elliptic region.

Remark: In one sense, the system of conservation laws (B.16) and (B.17) is not generic:

the flux functions take a special form f(u, v) = ut(u, v) and g(u, v) = vt(u, v). This form

is not stable under general perturbations, which would break the intersecting surfaces apart

and remove the singularity. However, the conservation laws may be regarded as generic,

in a different sense, provided that the physical system being modeled imposes this special

form of the flux functions and allows for general perturbations of 9.

Evaluated on the ruled surface, the equation defining integral curves is

0 = - sin W du + cos sp dv = x di. (B.20)

Thus an integral curve in this part of the characteristic surface is a horizontal line W -

const., -u sin W + v coso S = 0. On the contact surface,

0 = -sin*du +-cos du) = dl, (B.21)

which implies that , = const. along integral curves in this portion. All points on the

coincidence locus are critical points for the line field defining integral curves, so that

Theorem 4.2 does not apply.

It may be verified that the determinant of Eq. (4.18), which defines the inflection

locus, vanishes identically on the contact surface; therefore the eigenvalue corresponding
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to this part of the characteristic surface is linearly degenerate. On the ruled surface, the

equation for the inflection locus reduces to

u [0 + u-, + v4., + v[4 + u1. + v4,], =0, (B.22)

i.e., to the vanishing of the derivative of the eigenvalue along the rarefaction.

In summary, the behavior of rarefactions near the coincidence locus, which separates

two regions of strict hyperbolicity, is as follows. A rarefaction curve projected from the

contact surface is a level curve 4 = const., whereas a rarefaction curve projected from

the ruled surface lies along a line -usin w + vcos W = 0, W = const. The two types of

rarefaction curves are tangent to each other at coincidence points, and generically they

cross the coincidence locus transversally. The corresponding eigenvalues are =4ont't 4P

and Amled = 4' + u4.- + v4., respectively: Thus the contact curves are linearly degenerate,

while the other eigenvalue typically increases monotonically through the coincidence locus.

In particular, Arnied switches from family 1 to family 2 as the corresponding rarefaction

curve is followed, in the direction of increasing eigenvalue, across the coincidence locus; at

the same time, Acontact switches from family 2 to family 1.
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